${ }^{\text {b }}$ Department of Chemistry, PDVP Mahavidyalaya, Tasgaon, Maharashtra 416312, India
*E-mail: sanyujapatil@yahoo.com
Received September 23, 2009
DOI 10.1002/jhet. 440
Published online 26 July 2010 in Wiley Online Library (wileyonlinelibrary.com).

In this work, tricyclic 1-amino-4-(substituted phenyl)[1,2,4]triazolo[4,3-a]quinazolin-5(4H)-one $\mathbf{3}$ was synthesized by treatment of 2-hydrazinyl-3-(substituted phenyl)quinazolin-4(3H)-one 2 with cyanogen bromide, which on cyclization with ethylacetoacetate to get the targeted fused tetracyclic derivatives of quinazoli-4(3H)one 4. The synthesized compounds have been characterized using IR and ${ }^{1} \mathrm{H} N \mathrm{NR}$, mass spectral data together with elemental analysis.

INTRODUCTION

Quinazoline derivatives have attracted considerable attention due to their significant biological activities [1,2], especially antifungal [3,4], insecticidal [5], antihistaminic [6], anti-inflammatory [7], antibacterial [8], anticonvulsant [9,10], antithrombotic [11], antitubercular [12], and antitumor [13]. In this article, we report a new route for the synthesis of triazolo and tetracyclic derivatives of quinazolinone.

RESULT AND DISCUSSION

The new triazolo and tetracyclic derivatives of quinazolinone were prepared following the reaction sequences depicted in Scheme 1 and supported mechanism in Scheme 2. The starting compound $\mathbf{1}$ was prepared by sequential treatment of anthranilic acid with thiocarbamate salts of substituted aniline and carbon disulphide according to the reported method [14]. The appearance of broad band at $3330-3110 \mathrm{~cm}^{-1}$ in IR spectrum and a singlet displayed at $\delta, 10-11 \mathrm{ppm}$ in the PMR spectrum due to - SH supports their formation. Compounds $\mathbf{1 a - g}$ were heated with excess hydrazine hydrate to form 2hydrazino derivatives $\mathbf{2 a - g}$ in good yield [15]; the for-
mation of which has been explained by the appearance of IR band at $3390-3300 \mathrm{~cm}^{-1}$ due to $-\mathrm{NHNH}_{2}$ and disappearance of singlet displayed at $\delta, 10-11 \mathrm{ppm}$ due to -SH and two additional singlets appeared between δ, $9-11$ and $\delta, 2-6 \mathrm{ppm}$ due to -NH and $-\mathrm{NH}_{2}$ protons, respectively, in their PMR spectra. The condensation of 2 with cyanogens bromide in absolute alcohol gave the corresponding desired tricyclic amino triazoles 3a-g; the formation of which was confirmed by the observation of a broad IR band at $3420-3000 \mathrm{~cm}^{-1}$ and singlet between $\delta, 3-6 \mathrm{ppm}$ due to $-\mathrm{NH}_{2}$ protons in their PMR spectrum. The compounds $\mathbf{3 a - g}$ were cyclocondensed with ethylacetoacetate to get the targeted tetracyclic compounds $\mathbf{4 a - g}$. The formation of $\mathbf{4}$ has been established by the disappearance of singlet between $\delta, 3-6$ due to $-\mathrm{NH}_{2}$ protons and appearance of additional singlets due to $\mathrm{Ar}-\mathrm{CH}_{3}$ and $=\mathrm{CH}$ in their PMR spectrum.

EXPERIMENTAL

All melting points reported are incorrect and were determined by open capillary method. All chemicals used were of A.R. grade and have been used without further purification. IR spectra (in $\mathrm{KBr}, \mathrm{cm}^{-1}$) were recorded on a Perkin-Elmer 783 (FTIR) spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra recorded in
Scheme 1

$\downarrow \begin{aligned} & \mathrm{NH}_{2} \mathrm{NH}_{2}: \mathrm{H}_{2} \mathrm{O} \\ & \text { Excess }\end{aligned}$

[2]
BrCN $\mathrm{EtOH} / \mathrm{NaOH}$

[3]

[4]

2-Hydrazinyl-3-(4-methoxyphenyl)quinazolin-4(3H)-one (2a). A compound la ($4.824 \mathrm{gm}, 0.018 \mathrm{~mol}$) was refluxed with 5 mL hydrazine hydrate in ethanol $(15 \mathrm{~mL})$ with constant stirring at $100^{\circ} \mathrm{C}$ for about 1.5 h , then cooled and thus the solid obtained was recrystallized from ethanol to furnish 2 a [15], yield, $4.118 \mathrm{gm}(86 \%)$, m.p. $207^{\circ} \mathrm{C}$, IR: 3386-3328, 1664 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}), 2.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right)$, $6.25\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NH}_{2}\right), 6.9-8.1(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 10.9(\mathrm{~s}, 1 \mathrm{H}, \mathrm{br}$, $-\mathrm{NH}) ; \mathrm{ms}: \mathrm{m} / \mathrm{z} 282(12), 266(26), 251(45), 175(100), 107(55)$, 31(10). Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~N}_{4}$ (266): C, 63.82\%; H, 5.00%; N, 19.85%. Found: C, $63.89 \% ; H, 5.04 \% ;$ N, 19.81%.

1-Amino-4-(4-methoxyphenyl)[1,2,4]triazolo[4,3-a]quina-zolin-5(4H)-one (3a). A compound 2a (5.054 gm, 0.019 mole) in ethanolic $\mathrm{NaOH}(50 \mathrm{~mL})$ and cyanogen bromide (1 $\mathrm{cm}^{3}, 0.019$ mole) were stirred for 3 h at room temperature. After neutralization of it with 10% sodium bicarbonate, the solid obtained was filtered and further recrystallized from ethanol to give 3a, yield, $4.423 \mathrm{gm}(80 \%)$, m.p. 270° C. IR: 3420-3010, 1685, $1615 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}): $\delta(\mathrm{ppm}), 2.56(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{Ar}-\mathrm{CH}_{3}\right), 5.62\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NH}_{2}\right), 7.1-8.2(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ; \mathrm{ms}:$ m/z 307(50), 291(20), 276(62), 200(100), 107(72), 31(16). Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{ON}_{5}$ (291): C, 62.53\%; H, 4.26\%; N,
22.79%. Found: C, 62.61%; H, 4.32%; N, 22.71%.

Scheme 2

$\mathrm{CDCl}_{3} / \mathrm{DMSO}-\mathrm{d}_{6}$ were scanned on a Bruker A-300 F-NMR spectrometer (Table 1). TMS was used as an internal standard with chemical shifts δ in ppm from down field to up field. Mass spectra were analyzed by EI technique on Shimadzu QP 2010 PLUS GC-MS system. The purity of products, in addition to the elemental analysis (Table 2), was checked by TLC.

3-(4-Methoxyphenyl)-2-sulfanylquinazolin-4(3H)-one (1). These compounds were prepared according to the reported method [14].
Table 1
Spectral characterization data of compounds $\mathbf{2}, \mathbf{3}$, and 4 .

Compound	$\mathrm{IR}\left(\mathrm{v}, \mathrm{cm}^{-1}\right) \mathrm{KBr}$	H^{1} NMR ($\left.\mathrm{CDCl}_{3} / \mathrm{DMSO}^{\text {- }} \mathrm{d}_{6}\right) \delta(\mathrm{ppm})$
2 a	3386-3328 ($-\mathrm{HNNH}_{2}$), 1660 (cyclic amido $\mathrm{C}=\mathrm{O}$), 1620 ($\mathrm{C}=\mathrm{N}$)	2.65 (s, 3H, $\left.\mathrm{Ar}-\mathrm{OCH}_{3}\right), 5.96\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NH}_{2}\right), 6.9-8.1(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 10.9(\mathrm{~s}(\mathrm{br}), 1 \mathrm{H},-\mathrm{NH})$
2 b	3372-3320 (- HNNH_{2}), 1654 (cyclic amido $\left.\mathrm{C}=\mathrm{O}\right)$, $1621(\mathrm{C}=\mathrm{N}$)	2.58 (s, 3H, $\left.\mathrm{Ar}-\mathrm{CH}_{3}\right), 2.95\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NH}_{2}\right), 7.0-8.2(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 10.15(\mathrm{~s}(\mathrm{br}), 1 \mathrm{H},-\mathrm{NH})$
2 c	3381-3319 (- HNNH_{2}), 1670 (cyclic amido $\left.\mathrm{C}=\mathrm{O}\right)$, 1625 ($\mathrm{C}=\mathrm{N}$)	2.62 (s, 3H, $\mathrm{Ar}-\mathrm{CH}_{3}$), $3.74\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NH}_{2}\right), 6.9-8.1(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 11.00(\mathrm{~s}(\mathrm{br}), 1 \mathrm{H},-\mathrm{NH})$
2 d	3380-3332 ($-\mathrm{HNNH}_{2}$), 1671 (cyclic amido $\left.\mathrm{C}=\mathrm{O}\right)$, $1622(\mathrm{C}=\mathrm{N}$)	2.61 (s, 3H, $\mathrm{Ar}-\mathrm{CH}_{3}$), 5.05 (s, $2 \mathrm{H},-\mathrm{NH}_{2}$), $7.2-8.4(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 11.02(\mathrm{~s}(\mathrm{br}), 1 \mathrm{H},-\mathrm{NH})$
2 e	3390-3331 ($-\mathrm{HNNH}_{2}$), 1664 (cyclic amido $\mathrm{C}=\mathrm{O}$), 1615 ($\mathrm{C}=\mathrm{N}$)	6.00 (s, $2 \mathrm{H},-\mathrm{NH}_{2}$), $6.8-8.0$ (m, 8H, $\left.\mathrm{Ar}-\mathrm{H}\right), 9.85(\mathrm{~s}(\mathrm{br}), 1 \mathrm{H},-\mathrm{NH})$
2 f	3376-3315 ($-\mathrm{HNNH}_{2}$), 1669 (cyclic amido $\mathrm{C}=\mathrm{O}$), 1630 ($\mathrm{C}=\mathrm{N}$)	5.14(s, 2H, $-\mathrm{NH}_{2}$), 7.0-8.3 (m, 8H, Ar-H), 9.51 (s(br), $1 \mathrm{H},-\mathrm{NH}$)
2 g	3388-3330 ($-\mathrm{HNNH}_{2}$), 1658 (cyclic amido $\left.\mathrm{C}=\mathrm{O}\right), 1628(\mathrm{C}=\mathrm{N})$	2.86 (s, 2H, - NH_{2}), 6.9-8.0 (m, 8H, Ar-H), 10.79 ($\left.\mathrm{s}(\mathrm{br}), 1 \mathrm{H},-\mathrm{NH}\right)$
3a	3400-3100 ($-\mathrm{NH}_{2}$), 1685 (cyclic amido $\mathrm{C}=\mathrm{O}$), $1615(\mathrm{C}=\mathrm{N})$	2.56 (s,3H, $\mathrm{Ar}-\mathrm{OCH}_{3}$), $5.62\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NH}_{2}\right), 7.1-8.2(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$
3b	3410-3050 ($-\mathrm{NH}_{2}$), 1690 (cyclic amido $\mathrm{C}=\mathrm{O}$), $1619(\mathrm{C}=\mathrm{N}$)	2.51 ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 3.72\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NH}_{2}\right.$), 7.0-8.1 (m, $\left.8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right)$
3 c	3390-3000 ($-\mathrm{NH}_{2}$), 1684 (cyclic amido $\mathrm{C}=\mathrm{O}$), $1622(\mathrm{C}=\mathrm{N}$)	2.50 ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 3.91\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NH}_{2}\right), 7.2-8.2(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$
3d	3416-3010 $\left(-\mathrm{NH}_{2}\right), 1681$ (cyclic amido $\left.\mathrm{C}=\mathrm{O}\right)$, $1615(\mathrm{C}=\mathrm{N}$)	2.55 (s, 3H, $\mathrm{Ar}-\mathrm{CH}_{3}$), $4.22\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NH}_{2}\right), 7.1-8.0$ (m, 8H, $\left.\mathrm{Ar}-\mathrm{H}\right)$
3 e	3395-3012 $\left(-\mathrm{NH}_{2}\right), 1689$ (cyclic amido $\left.\mathrm{C}=\mathrm{O}\right), 1630(\mathrm{C}=\mathrm{N})$	4.80 (s, $\left.2 \mathrm{H},-\mathrm{NH}_{2}\right), 6.8-8.0$ (m, 8H, $\left.\mathrm{Ar}-\mathrm{H}\right)$
3 f	3415-3090 ($-\mathrm{NH}_{2}$), 1685 (cyclic amido $\mathrm{C}=\mathrm{O}$), $1625(\mathrm{C}=\mathrm{N}$)	6.00 (s, $2 \mathrm{H},-\mathrm{NH}_{2}$), 7.1-8.3 (m, 8H, Ar-H)
3 g	3400-3105 ($-\mathrm{NH}_{2}$), 1687 (cyclic amido $\mathrm{C}=\mathrm{O}$), $1617(\mathrm{C}=\mathrm{N}$)	5.35 (s, $2 \mathrm{H},-\mathrm{NH}_{2}$), 7.0-8.3 (m, 8H, Ar-H)
4a	1725-1690 broad and 1662 (cyclic amido $\mathrm{C}=\mathrm{O}$), $1626(\mathrm{C}=\mathrm{N}$)	$2.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 2.49\left(\mathrm{~s}, 3 \mathrm{H},=\mathrm{C}-\mathrm{CH}_{3}\right), 6.21(1 \mathrm{H}, \mathrm{s},=\mathrm{CH}), 7.2-8.4(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$
4b	1720-1691 broad and 1668 (cyclic amido $\mathrm{C}=\mathrm{O}$), $1618(\mathrm{C}=\mathrm{N}$)	$2.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 2.49\left(\mathrm{~s}, 3 \mathrm{H},=\mathrm{C}-\mathrm{CH}_{3}\right), 6.32(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.0-8.2(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$
4c	1722-1693 broad and 1665 (cyclic amido $\mathrm{C}=\mathrm{O}$), $1615(\mathrm{C}=\mathrm{N}$)	2.38 (s, 3H, $\left.\mathrm{Ar}-\mathrm{CH}_{3}\right)$, $2.58\left(\mathrm{~s}, 3 \mathrm{H},=\mathrm{C}-\mathrm{CH}_{3}\right), 6.65(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.1-8.3(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$
4d	1709-1696 broad and 1670 (cyclic amido $\mathrm{C}=\mathrm{O}$), $1620(\mathrm{C}=\mathrm{N}$)	2.40 (s, 3H, Ar $-\mathrm{CH}_{3}$), $2.39\left(\mathrm{~s}, 3 \mathrm{H},=\mathrm{C}-\mathrm{CH}_{3}\right), 6.43(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.0-8.5(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$
4 e	1720-1684 broad and 1667 (cyclic amido $\mathrm{C}=\mathrm{O}$), $1622(\mathrm{C}=\mathrm{N}$)	2.45 (s, 3H, $\left.=\mathrm{C}-\mathrm{CH}_{3}\right), 6.22(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.2-8.2(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$
4 f	1730-1700 broad and 1675 (cyclic amido $\mathrm{C}=\mathrm{O}$), $1632(\mathrm{C}=\mathrm{N}$)	$2.61\left(\mathrm{~s}, 3 \mathrm{H},=\mathrm{C}-\mathrm{CH}_{3}\right), 6.51(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.1-8.3(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$
4 g	1728-1697 broad and 1668 (cyclic amido $\mathrm{C}=\mathrm{O}$), $1625(\mathrm{C}=\mathrm{N}$)	$2.51\left(\mathrm{~s}, 3 \mathrm{H},=\mathrm{C}-\mathrm{CH}_{3}\right), 6.40(1 \mathrm{H},=\mathrm{CH}), 7.0-8.1(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$

Table 2
Characterization data of compounds $\mathbf{2}, \mathbf{3}$, and $\mathbf{4}$.

Compound	R groups	m.p. $\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%)	Molecular formula	Calcd (\%) (Found)		
					C	H	N
2b	$o-\mathrm{CH}_{3}$	209	86	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{ON}_{4}$	$\begin{gathered} 67.65 \\ (67.59) \end{gathered}$	$\begin{gathered} 5.30 \\ (5.38) \end{gathered}$	$\begin{gathered} 21.04 \\ (21.10) \end{gathered}$
2 c	$m-\mathrm{CH}_{3}$	211	86	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{ON}_{4}$	$\begin{gathered} 67.65 \\ (67.58) \end{gathered}$	$\begin{gathered} 5.30 \\ (5.25) \end{gathered}$	$\begin{gathered} 21.04 \\ (21.12) \end{gathered}$
2d	$p-\mathrm{CH}_{3}$	205	76	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{ON}_{4}$	$\begin{gathered} 67.65 \\ (67.72) \end{gathered}$	$\begin{gathered} 5.30 \\ (5.35) \end{gathered}$	$\begin{gathered} 21.04 \\ (21.09) \end{gathered}$
2 e	$p-\mathrm{Cl}$	218	82	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ON}_{4} \mathrm{Cl}$	$\begin{gathered} 58.65 \\ (58.58) \end{gathered}$	$\begin{gathered} 3.87 \\ (4.95) \end{gathered}$	$\begin{gathered} 19.54 \\ (19.47) \end{gathered}$
2 f	$m-\mathrm{Cl}$	222	82	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ON}_{4} \mathrm{Cl}$	$\begin{gathered} 58.65 \\ (58.55) \end{gathered}$	$\begin{gathered} 3.87 \\ (4.80) \end{gathered}$	$\begin{gathered} 19.54 \\ (19.60) \end{gathered}$
2 g	$p-\mathrm{Br}$	196	83	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ON}_{4} \mathrm{Br}$	$\begin{gathered} 50.78 \\ (50.62) \end{gathered}$	$\begin{gathered} 3.35 \\ (3.40) \end{gathered}$	$\begin{gathered} 16.92 \\ (16.86) \end{gathered}$
3b	$o-\mathrm{CH}_{3}$	269	78	$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{ON}_{5}$	$\begin{gathered} 65.97 \\ (65.91) \end{gathered}$	$\begin{gathered} 4.50 \\ (4.58) \end{gathered}$	$\begin{gathered} 24.04 \\ (24.16) \end{gathered}$
3c	$m-\mathrm{CH}_{3}$	272	68	$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{ON}_{5}$	$\begin{gathered} 65.97 \\ (66.06) \end{gathered}$	$\begin{gathered} 4.50 \\ (4.44) \end{gathered}$	$\begin{gathered} 24.04 \\ (24.12) \end{gathered}$
3d	$p-\mathrm{CH}_{3}$	265	72	$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{ON}_{5}$	$\begin{gathered} 65.97 \\ (65.98) \end{gathered}$	$\begin{gathered} 4.50 \\ (4.49) \end{gathered}$	$\begin{gathered} 24.04 \\ (23.99) \end{gathered}$
3 e	$p-\mathrm{Cl}$	278	70	$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ON} \mathrm{S}_{5} \mathrm{Cl}$	$\begin{gathered} 57.80 \\ (57.73) \end{gathered}$	$\begin{gathered} 3.23 \\ (3.12) \end{gathered}$	$\begin{gathered} 22.47 \\ (22.38) \end{gathered}$
3 f	$m-\mathrm{Cl}$	281	69	$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ON} 5 \mathrm{Cl}$	$\begin{gathered} 57.80 \\ (57.71) \end{gathered}$	$\begin{gathered} 3.23 \\ (3.11) \end{gathered}$	$\begin{gathered} 22.47 \\ (22.51) \end{gathered}$
3g	$p-\mathrm{Br}$	276	73	$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ON} \mathrm{S}_{5} \mathrm{Br}$	$\begin{gathered} 50.58 \\ (50.65) \end{gathered}$	$\begin{gathered} 2.83 \\ (2.91) \end{gathered}$	$\begin{gathered} 19.66 \\ (19.51) \end{gathered}$
4b	$o-\mathrm{CH}_{3}$	308	70	$\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~N}_{5}$	$\begin{gathered} 67.22 \\ (67.16) \end{gathered}$	$\begin{gathered} 4.23 \\ (4.11) \end{gathered}$	$\begin{aligned} & 19.60 \\ & (19.52) \end{aligned}$
4c	$m-\mathrm{CH}_{3}$	307	68	$\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~N}_{5}$	$\begin{gathered} 67.22 \\ (67.11) \end{gathered}$	$\begin{gathered} 4.23 \\ (4.18) \end{gathered}$	$\begin{gathered} 19.60 \\ (19.69) \end{gathered}$
4d	$p-\mathrm{CH}_{3}$	302	69	$\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~N}_{5}$	$\begin{gathered} 67.22 \\ (67.27) \end{gathered}$	$\begin{gathered} 4.23 \\ (4.22) \end{gathered}$	$\begin{aligned} & 19.60 \\ & (19.69) \end{aligned}$
4 e	$p-\mathrm{Cl}$	312	73	$\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~N}_{5} \mathrm{Cl}$	$\begin{gathered} 60.41 \\ (60.36) \end{gathered}$	$\begin{gathered} 3.20 \\ (3.14) \end{gathered}$	$\begin{gathered} 18.54 \\ (18.48) \end{gathered}$
4 f	$m-\mathrm{Cl}$	310	70	$\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~N}_{5} \mathrm{Cl}$	$\begin{gathered} 60.41 \\ (60.50) \end{gathered}$	$\begin{gathered} 3.20 \\ (3.12) \end{gathered}$	$\begin{gathered} 18.54 \\ (18.48) \end{gathered}$
4g	$p-\mathrm{Br}$	314	61	$\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~N}_{5} \mathrm{Br}$	$\begin{gathered} 54.04 \\ (54.11) \end{gathered}$	$\begin{gathered} 2.86 \\ (2.77) \end{gathered}$	$\begin{gathered} 16.59 \\ (16.64) \end{gathered}$

Fused tetracyclic quinazolin-4(3H)one (4a). A mixture of 3a ($2.91 \mathrm{gm}, 0.01 \mathrm{~mole}$), ethylacetoacetate $\left(12.7 \mathrm{~cm}^{3}, 0.01\right.$ mole) and glacial acetic acid (20 mL) was refluxed for 4 h . The solution was concentrated, cooled, and the crude product obtained was recrystallized from chloroform: n-hexane ($50 \% \mathrm{v} /$ v) mixture, yield, 2.570 gm (72%), m.p. $310^{\circ} \mathrm{C}$. IR: $1725-$ 1690 broad, $1662 \mathrm{~cm}^{-1}, 1625 .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta(\mathrm{ppm})$: $2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 2.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 6.21(\mathrm{~s}, 1 \mathrm{H}$, $=\mathrm{CH}), 7.2-8.4(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ; \mathrm{ms}: \mathrm{m} / \mathrm{z} 373(45), 342(55)$, 266(100), 107(35), 31(15). Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~N}_{5}$ (357): C, 64.34%; H, 4.05%; N, 18.76%. Found: C, 64.27%; H, 4.11\%; N, 18.79\%.

REFERENCES AND NOTES

[1] Ammar, Y. A.; El-Sharief, A. M. Sh.; Zahran, M. A.; Ali, A. H.; El-Gaby, M. S. A. Molecules 2001, 6, 267.
[2] El-Sharief, A. M. Sh.; Ammar, Y. A.; Zahram, M. A.; Ali, A. H. J Chem Res 2002, 5, 205.
[3] Alagarsamy, V.; Giridhar, R.; Yadav, M. R.; Revati, R.; Ruckmani, K.; Chercq, E. D. Indian J Pharm Sci 2006, 68, 532.
[4] Ghorab, M. M. Farmaco 2000, 55, 249.
[5] Singh, T.; Sharma, S.; Kishore, V.; Shrivastava, K. A. Indian J Chem 2006, B45, 2558.
[6] Raju, M. B.; Singh, S. D.; Raghu, R. R. A.; Rajan, K. S. Indian J Pharm Sci 2007, 69, 853.
[7] Yadav, M. R.; Shirude, S. T.; Parmar, A.; Balaraman, R.; Giridhar, R. J Heterocycl Compd 2006, 42, 1038.
[8] Alagarsamy, V.; Pathak, U. S.; Goyal, R. K. Indian J Pharm Sci 2000, 62, 63.
[9] Ghany, A. E. A.; Hemeda, A. W. M. Acta Pharm 2003, 53, 127.
[10] El-Helby, A. G. A. Acta Pharm 2003, 53, 127.
[11] Demer, J. P. J Heterocycl Chem 1989, 26, 1535.
[12] Kunes, J. Farmaco 2001, 55, 725.
[13] Bradly, D. S. Tetrahedron Lett 2001, 42, 1851.
[14] Husain, M. I.; Shrivastava, G. C.; Dua, P. R. Indian J Chem 1982, B21, 381.
[15] Salih N. A. Turk J Chem 2008, 32, 229.

